IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Perpendicular magnetic anisotropies in ultrathin BCC iron films and surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys.: Condens. Matter 6 1183
(http://iopscience.iop.org/0953-8984/6/6/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 14:46

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

I Phys.: Condens, Matier 6 (1994) 1183-1206. Printed in the UK

Perpendicular magnetic amsotroples in ultrathin Bcc iron
ﬁlms and surfaces

) Long—Pel Shi

Microelectronics Research Insntuta of Zhongshan Umvemty, Guangzhon, People’s Republic
of China .

Received 14 January 1992, in final form 6 September 1993

Abstract. . The perpendicular magnetic anisofropy in one- to six-monolayer bce Fe films is
studied by the Green-function method based upon the Heisenberg model (5 > 1) with out-of-
_plane spin orientation of the atoms af the surfaces. The various anisoiropy constants resulting
from surface single-ion anisotropy have been derived for the first time. According to the
anisotropy constants as functions of the thickness of ultrathin films and temperature, we explain
that there is a perpendicular remanence for an intermediate range of thickness of ultrathin films
and temperatere. The Curfe temperature and the spontaneous magnetization of each atomic
plane are calculated by taking into account the exchange interaction of the first- and second-
neighbour couplings. It has been shown that in a one-monolayer film the second-neighbour
exchange coupling was enhanced markedly owing to loss of the first-neighbour atoms and great
enhancement of the overlap of the electron ¢loud of the second-neighbour atoms. Tt is proved
that the behaviours of ferromagnetic transition  and perpendicular remanence of ultrathin films
depend strongly on.-the requ:rement that the spm be perpendicalarly pmned to some degree at
the surfaces .

1.:Intreduction -

‘Recent experiments were explmted to study epitaxial BCC Fe films grown on Ag(001),
Au(001) and PA(001) (abbreviated Fe/Ag(001), Fe/Au(001) and Fe/Pd(001)). It has been
shown that the perpendicular magnetic behaviour in ultrathin films points out the observed
discrepancies betweesn various experiments. (i) The work of Jonker et af [1] has shown that
at room temperature there was no in-plane moment for films less than three monolayers
(ML). It was suggested that this resulted from a perpendicular anisotropy strong enough to
compete with the demagnetization field, which forced the magnetic moments to lie along the
surface normal. (ii) Koon ez al [2] showed that at temperatures down to 15 K the orientation

“of the magnetic moment of 1 and 2.4 ML films in zero applied field is perpendicular to the
film plane, while the orientation of the 5.5 ML sample is in-plane-at room temperature and
partially out-of-plane at low temperature. (iii) The work of Stampanoni f al [3] has shown
that at T = 30 K the 3 to 4 ML films have a perpendicular remanence (PR), whereas thinner
and thicker films have their magnetization in-plane.: Above T = 100 K no PR has been
observed for any film thickness. (iv) Cabanel et al [4] showed that for the BCC Fe(001)/
FCcC Ag(001) superlattices the interface anisotropy overcomcs the demagnetizing field effect
when the thickness of the Fe layers decreases below 10 A7 ML). From magnetization
measurements, the anisotropy for the 50x(10 A Fe/40 A Ag) superlattice is perpendicular
at 5 K and in-plane at 300 K. The anisotropy constant is derived from both experiments,
which leads to 0.8 erg cm2 for the interface anjsotropy- constant K. :
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Although there are quite a few discrepancies in the results of the above-mentioned
experiments, it shown that the PR of ultrathin films depends strongly on the temperature
and the thickness of ultrathin films. In this paper, we give a theoretical interpretation of the
discrepancies in the results of various experimenis based upon the surface anisotropy (SA)
of BCC Fe film [5]. As Pappas [6] and Rau et al [7] remark, the observed discrepancies
between various experimental results could be dve to effects caused by surface oxygen
absorption and coatings, or stress and strain in films evaporated at different temperatures, or
the use of non-atomically flat substrate surfaces resulting in stepped films. We introduce the
strength of surface anisotropy D to describe the surface situation of various experimental
specimens. The theory shows that the discrepancies of SA strongly change the behaviour
of PR of ultrathin films. The observed discrepancies between various experimental results
could be explained by the discrepancies of SA of various experimental specimens.

Recent studies have shown that the ferromagnetic phase transition in ultrathin films and
surfaces may differ markedly from that in the bulk, The experiments were exploited to
study Fe/Ag(001), Fe/Au(001) and Fe/Pd{001) films. It has been shown that the magnetic
phase transition behaviour of ultrathin films is not the same as that of a bulk magnet: Very
thin magnetic films—in the case of BCC Fe/Ag(001) < 5 ML—have a reduced transition
temperature {8]. Fe/Ag{001) films thicker than 5 ML have a Curie temperature T¢ equal to
that of bulk Bcc Fe, while T of a 1 ML film is about 400 K [3]. Rau et af [7] have shown
that the Curie temperature of a 1 ML Fe/Ag(001) film is below 290 X: Durr et af [9] studied
the system Fe/Au(C01), and found that the Curie temperature of a 1 ML film is 300 K, that
of a 2 ML film is 400 K and that of a 3 ML is 600 K; for thickness larger than 1 ML the
bulk value is rapidly approached. Liu ef af [10] studied magnetic properties of the system
Fe/Pd(001). Their experiments showed that there is a rapid change in the T values in the
monolayer and submonolayer region and a more gradual change for thicker films: While
Tc of a I ML film is just above 300 K, T of a 2 ML film is 500 K and T of a 4 ML film
is 600 K.

We have recently studied the ferromagnetic phase transition in ultrathin films [11] and
multilayer films [12] for simple cubic lattices. In this paper we use a similar method to
-study BCC Fe ultrathin films. The expression for the Curie temperature as a function of the
thickness of ultrathin films and the surface anisotropy have been derived. The agreement
between calculation and experiment is remarkably good.

2. Model

Gay et al [5] calculated the spin anisotropy of monolayers of Fe, Ni, V and Co by
incorporating the spin—orbit interaction into the self-consistent local-orbital method. They
found that the easy direction of magnetization is perpendicular to the plane of the monolayer
for Fe and V, but in the plane for Ni and Co. In terms of energy per atom, the monolayer
anisotropies are large. For example, the anisotropy of the Fe monolayer (=~ 0.4 meV/atom)
is 100 times the amisotropy of bulk Fe (4 peV/atom). This is a consequence of the reduced
symmetry of the monolayers, which allows the anisotropy to enter in second order. To study
the effect of surface on the nature of the ferromagnetic phase transition and perpendicular
magnetic anisotropy, we assume that the surfaces of BCC Fe n ML films are parallel to
(001} planes and perpendicular to the z axis. The films have a finite amount of » atomic
planes in the z [001] direction and an infinite number of & atoms (N -—» oc) in both
the x [100]) and y [010] direction. We shall use two different coordinate systems: the
system (x, y,z) is related to the lattice, the z axis being perpendicular to the film plane;
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and the system (X, ¥, Z) refers to the spins, with Z being the quantization axis. For the
perpendicular easy axis the two systems coincide; whereas for easy-plane anisotropy, Z
coincides with y (X with z, and ¥ with x). The spin Hamiltonian of a BCC Fe film contains
-three parts: the Heisenberg exchange term, the shape anisotropy (demagnetization) term
and the surface anisotropy (SA) term. To consider incorporating the spin—orbit interaction
- into the local orbital [5] and demagnetization energy of uniform magnetization, these terms
can be deduced by the method of second quantization. The spi_n‘ Hamiltonian is given by

] ' . |
H=—z 3 JppSE8% Zof(S})z NZZ W
20!.f[»f2 2v fi.fa

Here lattice site f stands for the position vector j in the xy plane and the coordinate v in the
z direction f = (, v); v marks the atomic planes of the # ML films (v =1,2,3,...,n); and
« denotes x, y and z. The exchange interaction of the first-neighbour coupling (J, 5, = J§)
and the second-neighbour coupling (J5 5, = J,) are taken into account. For simplicity, we
assume that the # ML films have a symmetrical surface and the spin orientation of the atoms
in the surfaces is out-of-plane, i.e. Dy takes the values Dy = D, = 0(forv=2,3,...,n-1)
and D; = D, = D > 0, in which the strength of surface anisotropy D measures the fact
that the spin be perpendlcularly pinned to some degree at the surface. In order that this
Hamiltonian may give an SA term, it is necessary that S > 1, where S denotes the quantum
number of the spin operator. N, denotes the perpendicular demagnetization factor; N, and
Ny are the plane demagnetization factors in ultrathin film. Let N, = 4o, N, = Ny = 0
approxnmate]y V is the volume of the film, v is ﬂtc primitive cell volume (V = N?nv). u
is magnetic moment; w.S is magnetic moment of ; an atom. Vatues appropnate for iron are
S =1, u = 2.2up and Bohr magneton pg = 0.927 x 10~ erg Oe~*

We study-ultrathin films with perpendicular surface anisotropy energy and demagnet-
ization energy, as shown in equation (1). The fitm has uniaxial anisotropy; and thus the
orientations of spontaneous magnetization {the direction of order for spins) in ultrathin ﬁIms
are all the same, either perpendicular to the film plane for the perpendicular easy axis or in
the film plane for the easy-plane anisotropy, while the magnitude of spontaneous magnet-
ization (the degree of order for spins) changes wntﬁ the position of the atomic planes owing
to toss of translational invariance in one dtrectmn of the ultrathm films [11,12]. In uitrathin
films the presence of the ferromacrnetlc domam structure is possible [13]; this case is not
- discussed in thlS paper. :

3. Curie temperature Ta and spontaneous magneuzatmn o, of each atomic plane in
BCC films '

This section examines the relative magnetization oy at site f in the case of perpendicular
easy axis, for which the two-coordinate systems (x, y, z) and (X, Y, Z) coincide. Because
the Z axis is the axis of quantization, we have (S’f) = oS, in which {") denotes the
statistical average. To take into account the translational invariance along the XY plane, oy
‘will depend only on the position v involved, so that o = o,. The present paper is concerned
primarily with finding a statistical approximation that is able to describe the magnetic
anisotropy of a fetromagnetic film in the presence of surface single-ion anisotropy. In order
to treat the single-ion anisotropy by the- double-time Green-function method, decoupling
procedures are generally employed to reduce the higher-order functions to the original
Green function. The exchange function can be decoupled by the Tyablikov approximation:
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«sz S B» =~ (Sf)((S,':"IBg)) for f # h. This is certainly a reasonable approximation as
long as f # k. For the special case f = h, such an approximation is less valid. Nevertheless
there have bean three distinct attempts to decouple the anisotropy Green function. They are

each of the form (SZ8} + 87 S7|B,) 2= I'1(SF){(S7 | B} The three choices made for
[y have been as follows:

Shi [11]

Fr=1
Anderson and Callen [14]

Ty =2-(1/28%(S; SF + 57 S;)
i_.incs [15]

Ly = (387 =SS+ M/NSFY  for By =5

(87 + 3(.5')%)3 — (282428 — 1)(8H) — S(S+ 1)SF)
= (SZ)((SEY + (852 — 5(5 + DSF)

. for By = SfS;.

Devlin [16] has set up a new formalism in which it is not necessary to decouple the
amisotropy Green functions and employ the decoupling schemes of the exchange terms.
Quantitative calculations are carried out for the Cure temperature of body-centred cubic
lattices with § = 1, which corresponds to the iron lattice. Although the decoupling scheme
given by Devlin does remarkably well in comparison with the earlier theories on this subject,
the results for the above different theories are approximately all the same in the case of
small D (D/J £0.5) [16].

A ferromagnetic thin film with the single-ion anisotropy has been studied by Endo and
Ayukawa [17] using the Green-function method and Devlin’s decoupling scheme for the
whole range of anisotropy strengths. In this paper we discuss the single-ion anisotropy
of the iron ultrathin film (§ = 1) for D very small (D/J <« 0.5). In order to simplify
the calculation for the spontaneous magnetization and conform with the calculation for the
anisotropic constant (see equation (12)), the decoupling scheme choice made for 'y has
been such that (see (94)):

Ty = {3(SZ)* — S(5 + IN/(SFY? = [25(S + 1) — 3(1 + 2P, HSEY/ (ST,

From 0 K to the Curie point the values of T’y as a function of temperature are from 1 to 3/4
for the above decoupling scheme, from 1 to 2/3 for the Anderson and Callen decoupling
scheme and 1 for Shi’s decoupling scheme respectively.

Erom (1) we have [11]

_ (S=PY(L+PYSH 4 (1+ 5+ PYPEH

hY
Ty (I'+ P,)25+1 — p2s+!

@)
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- 3.1 ForBccnMLfilms(n22)

In this case

| o |
P, = vk o

o f dhy Z  exp(wn/ ks T) — 1 e
Pu = Pn+l—u

where kg is Boltzmann s'constant and Tis absolute temperature. wyy i determined by the
characteristic equation as follows:

wpe — Ey J| J'
7 Jz @Whe ™ Eg Jz : f£

J: Ji om—E, 4, Jy =0 {4)

o B om—B )
J{ Ji T — By

Ey = 41580, + 27,501 (2 — c08 hx — 08 ;) + J,So3 - DT S0y — A M;

E, =4Jr8$(0v~1 + 0v41) + 2J;80,(2 — cos by — cos hy)

+ TSy + Ouid) —pdnMy,  (forv=2,..,n—1) (4a)
Iy =47 S0y cos(hs/2) cos(hy/2)  J'=/Se,  (forv=1,...,n) (4b)
= [28(§ + 1) = 3(1 + 2P))So1}/(So1)? (4c)
_ ' 1
My=u (SEV/V =M@= 3 00 Mi(0)=uS/v (4d)
Ff v :

Oy = Ontl-vy Ey = Epglew

wpe and U2, = Ayy(one)/ Ty (0ne — 0pe) (see appendix) (4e)

hy =2mn /N hy =2mn,/N

where the allowed values of n; and ry are 0, £1,£2, ... £ N/2 (N — ©0), k and L take
the values 1,2,3,...,#. A, (wp) 15 the subdeterminant of the v row, v column of the
tridiagonal form (4). ' '

© Using (2)—(4e), we can calculate the Curie temperdture T, and the temperature
dependence of the spontaneous magretization o, (v = 1,2,3,..., n). For inequivalent
atomic planes of n ML films the o, are different but T, are equal [11].

Otherwise, from (2)—{(4e) and the high-temperature approximation [18] we deduce the

Curie temperature of atomic planes in the film:.

Teo = [8S(S + 1)/3C.1(Jy / ks) - )



1188 Long-Pei Shi

where

SSa.,J 850, J¢U3,

C, = Cn+l—u Tow = Tent1—y (v=12,...,n).

Because awy/o, depends on o, /o, (see (4) and appendix), the convergent condition
of integrals (6) requires that the values of o,/g, are finite and non-zero or o, (v =
1,2,3,...,n) simultaneously approaches zero at the Curie temperature Tt, i.e. the Curie
temperatures of atomic planes in # ML films are equal:

Te=Tar=To
or
C,=C, (v=2,3,....n/20r (n+1)/2). 6

To satisfy the condition (7} the Curie temperature T and the ratio of oy and o,
(v =2,3,...,n) has been determined simultaneously by the use of (5) and (6). When the
above-discussed different methods for determining the Curie temperatures are compared,
their results are consistent [11, 12].

3.2. For scc 1 ML films

This is two-dimensional square lattice with the exchange integral J5 , = J,. Equations (2)
and (3) can be replaced by

1 x 1
P,=P = dh, dh, i 3
VT 2n)e f f_ﬁ T explwny /kpT) — 1 @a)

The Curie temperatue of 1 ML films is given by
Te = [4S(S + 1)/3C1(4,/K) (Sa}

where

1 ™ 450y J,
) = —— dh,. dh - - 6
' = o f [. = (6a)

wy; = 25,S01(2 — coshy —coshy) + DI Soy — pdm M; (Q)a.
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3.3. For BCC bulk magnet

This corresponds to films with n — 0o, The Curie temperature Tey is ‘given by
Tep = [88(S + 1)/3Co)(U/ks) ®

where

1. w .
Cy = aﬁiff[z dh, dhy dh,fwp : _ 8a)
wy, = | —costh, /2)cos(h, /2) cos(h,/2) + (3lj_\-/4jf)[1 —(cos h; +cosh, +cosh,) /31

Finally, we must emphasize that the calculated formulae for the spontaneous magnetization
(the integral (3) or (3a) can be integrated at finite temperature ) given by this section are
suitable only for the case of perpendicular easy axis. Whether there is an energy gap at the
bottom of the spin-wave spectrum decides the convergence of integral (3) or (34} and the
magnetization state in # ML film. The stabilization of perpendicular magnetization in this
case is due mainly to the surface anisotropy (SA} and to the associated gap at the bottom
 of the spin-wave spectrum (see appendix). It is consistent with the criterion of PR, i.e. the
presence of an energy gap is equivalent to K,(7) > 0 (see the next section). For the case
of very weak SA the dipolar interaction is large compared to SA and no gap appears at the
bottom of the spin-wave spectrum. Therefore the integral (3) or (3a) cannot be integrated.
This shows that the magnetization is stabilized in-plare and no longer lies.along the surface
normal, which corresponds to K;(z) < 0. If the energy gap of the bottom of the spin-wave
spectrum equals zero at the temperature 7, and K, (7)) = 0 (see the next section), the integral
(3) or (34) cannot be integrated, which means that a reversible transition between in-plane
and perpendicular magnetization exists in the # ML film at the temperature 7, (% is called
the transition point). If the integral (6) or (64) can be integrated, it means that from 0 K to
the Curie point there is a PR in the n ML film. Conversely, if the integral (6) or (6a) cannot
be integrated, this shows that from 0 K to the Curie point or at least in the range of high
temperature there is in-plane magnetization PR.

4. Perpendicular magnetic anisotropies in ultrathin Bcc films

We. examine the perpendicular magnetic anisotropy in ultrathin-films. The assumption
is made that the magnetic anisotropy energy depends on the direction of spontaneous
" magnetization y with respect to the film or lattice axes' (x[100], y(010), z{001]), that is
on the direction cosines y*, y¥, ¥%. We assume new axes (X, ¥, Z) in which Z is the
direction of the spontaneous magnetization (Z being the quantization axis) and ¢ is the
angle between z and Z axes. Let the components of the spin operator with respect to the
film axes be 8%, §¥, 8% and to the new axes be $%, 8%, §Z, Tyablikov [18] gave their
transformation relation: ' .
8F =y"S7+ASST +AMS;  S;=S8F+i8{ 87 =8f-is} 9)

where
@=1x,y.z y* =cosf At =31 = (532
PV YT Ry =1 AT A A = 0 (9a)
ATA + ATAY 4 APAT =0 ATAT AT AT £ AT AT = 12,
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Substitution of (9) and (9a) into (1) leads to the expression for the spin Hamiltonian and
the free energy of the system F or f

1 — 3 o4 —
H=> ; Inp(SESE + 8557 —; DAWHSEY + (A(SH* + (A™)X(87 )
1.Ja .
+ yRAN(SEST + SFSF) + v A™(SES] + 87 5%)
+ ATAT(STS; + S S+ .. : (la)
F = Fe + Fi + Fg = —kgT Insp(e™"/*T) F=F/V (10)

where F, is the exchange energy, Fy is the crystalline anisotropy energy and Fy is the
shape anisotropy (demagnetization) energy.
The free energy f and the uniaxial anisotropy constant K, are given by

f=fo+ Kysin®6+...
1 9F 1( aH
V a(sin?8)  V \3(sin28)

u=

)=KV—K¢|. : | (I

We define the crystalline anisotropy constant or the effective volume anisotropy constant
K. and the shape anisotropy constant Kg.

Because the Z axis is the axis of quantization, so (S}) = (Sf) =0, (8f) =(S;)=0.
By employing the Green-function method [18], we have

((S)%) = ((57)%) = (5} §%) = (S7 5%) = (SES}) = (S78;7) = 0. (9B)
The expressions have been given by [18]

(S}S; + 5781 =20S(S+1) - (SF)] (9c)

((SEY) = S(S+1) — (1 +2P;HSF) (9d)
where Pr = P, and (Sf) = (5§%) = So, to be calculated from (2) and (3). Substituting
{l2) and (9a)—~(9d) into (1 1), K, is given by )
k=2 Y DUBSH? - S+ D12 = ik S DIS(S+ D) - 21 4+2P)S0,] (12)

v = v a v v - = v e © B o v

where V = N?na’/2, a is the lattice constant, n is the number of atomic planes of the film
and the primitive cell volume v is a%/2.

Suppose the perpendicular magnetic anisotropy only resulted from the $4, ie. D) =
D, =D,D,=0(=2,...,n—1). From equation (12) we have

K(v) = (D/a®S(S +1) — 2(1 + 2P)§a] (13)
Ky(7) = @AD/m[S(S + 1) = 2(1 +2P))Sa] = (AD/a’m)T"1(So1)? (14)
K1) = AK () /d d=naf2

where A is the number of surfaces (A=1forn = 1; A =2 for n 2 2), the dependence of
the effective volume anisotropy constant on temperature T has been emphasized by writing
K,(t), while K(7) is the surface anisofropy constant at temperature .



Perpendicular magnetic anisotropies ) 1181

-At absolute zero temperature, since o1 = 1 and Pl =0as1=0, equauons (13) and
(14) are replaced by

K(0) = (DS/AS =1/ (130)
CK,(0) = (2ADS/a3n)(S —1/2). . (l4a)

Just below the Curle temperature 'cc, since o, — Oand P, — o0 a5 T — Tc, equatlon {2)
is replaced by

o . 28 -2
3Pur.rv=(S+1_)( 1p; +—9—%Pu )

On substituting into (13) and (14) we now get

D [3S(S+3/DE=1/2) -

Ks(r)...a—z( S 62 +0(0}) +.. ) (138)
‘_2AD 3SE+3/D(S =1/ ,

Ru(r) = —5~ ( ) +0( 0+ ) (14b)

From (11) we derive the expression for the shape anisotropy constant Kq(t) as: -

Kd(_f) =2z M) = 2KM§(0)(; Za) : _ 8
where M;(z) is spontancous magnetization at temperature 7.
The uniaxial anisotropy constant (11) was rewritten as

Ku(2) = Ko(2) — Ka(z). - e

We discuss the stability condition of perpendicular remanence (PR) from a balance
between the surface and the dernagnetization anisotropic energy in the ultrathin film. If
Ku(t) > O there is a PR resulting from a perpendicular surface anisotropy strong enough to
overcome the shape anisotropy, which is decided by four factors, including the strength of
surface anisotropy D, the thicknesss of ultrathin film », the temperature 7 {or ¢, and I'y) and
the absolute saturation magnetization M (0). Gederally, for weak surface anisotrapy (117,
o1 < &y (v 1), and as the temperature increases o7 drops more rapidly than o, (v 3 1).
Hence lower temperature, thinner film, larger D and smaller M,(0) are advantageous for
the presence of PR. As above, we can predict that Fe films and fixed D and M(0) have a
PR for an intermediate range of film thickness and temperature. For example we intcrpret
that Fe film has a PR just for films less than 5.7 ML. From {14a), (15) (16) and K (O) >0
we now get the condition for a PR to cxlst at 0 K:

AD(S = 1/2)/n —ZnuM.,(O) 0. Can

For ultrathin -BCC iron film with D = 0.8 meV [5] and M (0) 1740 G (S =1, u8 = -

2.2 pup and M (0) =S/ (a3/2)) we obtain n < 5.7, which agrees with the result of the
experiment [2]. :

Finally, we. can prove that the condltlons of Ku('cr) = 0 and zero energy gap at. the
bottor of the spin-wave spectrum are equivalent. From the conditions -of zero energy gap
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gap given by the appendix, such as wg (%) =0, wn(n) =0, we(z) = 0, wu(w) =0,
wos(te = 0 (ie. ¢ = 0) and wos(t) = 0 (le. o = O for 1, 2, 3, 4, 5 and 6 ML film
respectively, we derive their equivalent equations as follows:

DI 8oy — udn M, =0 (for 1 and 2 ML film)

DT 8oy — pd M = pdrr Moos /(20y) (for 3 ML film and 8J;So1 > pdm M)

DT 8oy — pdm M, = pdmr Mo /o (for 4 ML film and 4J;Soy + J.Soy 3> udmr M)
2Dl"[.S'0',2 ~ 201 + 20 +o3)pudnM; =0 (for 5 ML film and JrSoy >3 pdmw M)
DT 862 — (0 + 02 + 05) b My = 0 (for 6 ML film and J;Soy > pdm M,).

From the above equations we now get

Ku(t) = ADT((S01)*/(a*n) — 2 M? = (ADP,SUE — udz M, Z&U)S/(Zvn) =0.

5, Numerical calculation and discassion

Using a computer to perform the numerical calculation of the temperature dependence of
the relative magnetization ¢, and the Curie temperature T, we design the first computer
program as follows: Because o, =1 (v =1, ..., n) at 0 K, if the increment in temperature
¢t and the initial values o, = | (v = 1,...,n/2 or (n -+ 1)/2) are substituted into (Z), (3}
and (4a)-(4e), the final values of oo, (f) at temperature ¢ are given by iterative solution
until 3, Ag,(2) < & (here Ao,(?) is the difference between the final value and the final
substituting value of ¢, (¢); the value appropriate for & is 10~ in this paper). Similarly, if the
increment in temperature 2z and the initiai values o, = 0, (¢) (v=1,...,n/2 or (n+1)/2)
are substituted into (2), (3) and (4a)—(4e), the final vaiues of ¢, = ¢,(2t) at temperature
2t are given by iterative solution until 3, _, Ac,(28) < 8 (here Ao, (21) is the difference
between the final value and the final substituting value of ¢,{2t)). We repeat the calculation
at temperature 3¢, 4¢, . .. step by step in the above way until o, =0 {v = 1,2,...,n) at the
Curie temperature. The relative magnetization o, of each atomic plane as a function of the
temperature 7 and the Curie temperature ¢ are given. The second computer program to
determine the Curie temperature is as follows: Let 0, /0, = (0,/01)/ (0, /01); we substitute
the initial values of ¢ /oy (v = 2,3,...,n/2 or (n + 1}/2) into equation (6). By iterative
solution until 3~ _, A{oy/oy) < € (here A(o,/oy) is the difference between the final value
and the final substituting value of ¢, /o;; the value appropriate for € is 107> in this paper),
we obtain the final values of o,/o7 and the corresponding value of C;, which satisfy
condition (7). From equation (5) the Curie temperature is determined. After determining
the variations of P, and o, with ¢, the anisotropy constants K, (7), Ky (7), K4(7}, K\(7)
and the energy gap at the bottom of the spin-wave spectrum as functions of the temperature
7 can be calculated by (13), (14), (15), (16) and the appendix. '

In the following numerical calculation we defined the reduced temperature T = T/ Ty,
where Tgy is the Curie temperature for the bulk magnet and 7 is absolute temperature; the
values appropriate for iron are § = 1, u = 2.2 g, M(0) = 1740 G, Top = 1043 K, the
lattice constant ¢ = 2.87 A, the primitive cell volume v = 4®/2, and the area taken up
by one atom in the surface is a®. First of all, we determine the value of D. From the
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Figure 1. The allowed values of exchange integrals (Jy, J' ) versis Jy/Jp curves for BCC bu!.k
iron with Curie temperature Ty = 1043°K. ~

data given by Gay er ai 3] the perpendicular anisotropic surface energy of BCC Fe(0D1) is
0.4 meV/atom and substituting this value into (13a) (K(0) = D/2a%, D/2 = 0.4 meV),
we obtain D = 0.8 meV and K,(0) = 0.778 erg cm™2. Secondly, we determine the values
“of the exchange integrals; in principle, the first- and second-neighbour couplings should be
considered. In practice, how to choose the values of the first-neighbour exchange integral
Jy and second-neighbour exchange integral J; was most important. In this paper, the
exchange integrals will be regarded as adjustable, to be determined, if possible, from fits
“to experimental measurements of magnetic properties. If the first- and second-neighbour
interactions are considered simultaneously, the bulk Curie temperature Ty, for BCC Fe
would depend on both Jy and J;. According to Tey 1043 K, using (8) and (8a) we
determine the allowed values of exchange integrals Jf- and J; (Jy, J;) for various J;/J;.
. For example, J; = 2347 meV, [, =0 (for J,/J; =0, G, = 1.393) ..., Jy = 1852 meV,
Jy = 5.554 meV (for J,/Jr = 0.3, Cp = 1.099) and J;y = 15.03 meV, J; = 9.605 meV (for
Jyfdr = 0639, C, = 0.8921), respectively, as shown in figure 1. From (5), (6), (7), (5a)
and (6a) we take the value D == 2 meV and choose different allowed values of (J¢, J;),
respectively, The calculated results for the Curie temperature as a function of the thickness
of the films are about the same in the case of 2 to 6 ML BCC iron films and approximately
agree with the experimeuts (7,9, 10}, as shown in figure 2, where 7c = T¢/ Tcp. Conversely,
to choose different allowed values of (J¢, J), respectively, the calculated values of the Curie
temperature in 1 ML BCC iron films are different and lower than the experimental results
(7¢ =~ 300 K), as shown in figure 2. Then we could not find a suitable value of J; to satisfy
both 1 ML and 2 to 6 ML, which means that the value of J, in I ML is not equal to the value
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Figure 2. In the case of D = 2 meV, the reduced Curie temperature 7o versus the thickness of
n ML films for various (Jy, Ji) or Ji/Js.

of Jy in 2 to 6 ML. Prom (3a), (6a} and letting D = 0.8 meV we obtain the Curle temperature
T as a function of J; in | ML film (see figure 3). If the value for J; is about 24 meV, it
goes beyond the limits of allowed values of J,; the calculated value of Tg of | ML film is
300 K, shown in figures 1 and 3. Therefore we suppose that the exchange integral J; in 1
ML films should be replaced by J; J is not equal to the allowed values of J; and can be
more than 12.21 meV. The reason is that the exchange interactions of the second-neighbour
atoms are enhanced owing to loss of the first-neighbour atoms and great enhancement of
the overlap of the electron cloud between the second-neighbour atoms. Furthermore, in
accordance with the band theory of ferromagnetism and Ruderman—Kittel-Kasuya—Yoshida
(RKKY) indirect exchange mechanism, the effective exchange integral as a function of the
interatomic distance R is

J(R) = F[coé(szR) — sin(2ksR)/ (2 R)/ R®.

For iron atom there are 0.6 electrons in the 4s band and the distances of first-
and second-neighbour atoms are 0.866a and a (@ = 2.87 A), respectively. We obtain
kp = 1.1455 x 107% em™! and J;/J; = 0.639. Therefore in the following numerical
calculation for I ML films we take the value J = 23.47 meV and the values roughly
appropriate for 2 ML or more BCC iron film are J; = 15.03 meV, J, = 9.605 meV
(Jo/Jr = 0.639, C, = 0.8921). Consider the exchange interaction of second-neighbour
atoms. The thoery could explain the fact that there is a rapid change in the T¢ values in the
monolayer and submonolayer region and a more gradual change for the thicker films [10].
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_ exchange integral J; (or J) in | ML films.

By employing équations (5), (6), (3a) and (6a), we perform the numerical caleulation of
the Curie temperature. In the case of D = 2 meV the integrals (6) and {64) can be integrated
for 1 ML to 6 ML films, i.e. there is a perpendicular remanence (PR} in the temperature range
of 0 K to Tc for 1 to 6 ML films. In the case of D = (.95 meV the integrals (6) and
(62) can be integrated for 1, 2, 3 and 4 ML films but no longer for 5 and 6 ML films. This
nteans that there are no PR at least in the range of high temperature for 3 and 6 ML films.
In the case of D = 0.8 meV the integrals (6) and (6a) can be integrated for 1, 2 and 3 ML
films but no Jonger for 4, 5 and 6 ML films.. The reduced Curie temperature tc versus the
thickness of # ML films for various D is illustrated in figure 4, where 7c = To/ Ten. The
calculations for the Curie temperature are consistent with the experiments [7, 9, 10].

- The variations in ¢, (1), ['1(7), Kv(7), Ka(7), wos and wos (the energy gap at the bottom
- of the spin-wave spectrum) with respect to the reduced temperature v in 3 ML and 5 ML
films are illusirated schematically in.figures (5a) and (), respectively, where v = T/ Tcp,
D = 0.8 meV, Generally, we can prove that the spontancous magnetization changes with
the position of the atomic planes, which are parallel-to the surfaces of n ML films, but the
" Curie temperatures of atomic planes are all the same. In this paper we have discussed the
special case, in which the SA on both surfaces aré equal (D; = D), and the spontaneous
magnetizations of inequivalent atomic planes are different (see figures 5(z) and (8)). The
“surface anisotropy (5A) can be divided into two cases [11]:- one is weak SA and the other is
strong SA. In the case of weak SA the spontaneous magnetization of the surface atomic plane
is less than-those of the other atomic planes. If Ky(t;) — Kg(z) = 0 the reversibie transition
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beween perpendicular (at low temperature T < 7) and in-plane (at high temperatore 7 > )
magnetization in ultrathin films will happen at temperature 7,. In the case of strong SA
the strong spontaneous magnetization of the surface atomic plane is more than those of the
other atomic planes. If K, (%) — K4(t.) = 0 at temperature 7, there is a reversible transition
between in-plane (at low temperature T < 7,) and perpendicular (at high temperature > z)
magnetization in ultrathin films. Generally, the energy gaps at the bottom of spin-wave
spectra in monolayer and submonolayer Fe films have the maximum values possible at
absolute zero degrees. Then, as the temperature is raised (or o, decreased), their magnitudes
decrease monotonically until ¢, = 0; they become zero at the Curie temperature, as wys3
shown in figure 5(z). However, if the ultrathin films have a reversible transition between
perpendicular and in-plane magnetization (o, # 0) at temperature , the calculated results
have proved that the zero energy gap at the bottom of the spin-wave spectrum and the
zero uniaxial anisotropy constant would happen simultaneously at the same temperature 7.
For example, in the case D = 0.8 meV for 5 ML film when the temperature has gone up
to T = 1, = 0.21, the film has wos(z) = 0 and Ky(%) — Ka(z) = O accompanied by
discontinuity changes in the spontaneous magnetization o, (T} at the same temperature 7,
as shown in figure 5(b). From (4¢) we get I'1{(0) = 1 at 0 K and I'i(z;) = 0.75 at Te.
I'i(r) as a function of temperature in 3 ML 'and 5 ML films has been shown in figures 5(a)
and (b).

In the case of D = 0.8 meV, which was established by Gay [5] (0.4 meV/atom), the
surface anisotropy constant K,{0) equals 0.778 erg cm~2 at 0 K. From (2), (3} and (13) we
further give the variation in the surface anisotropy constant K,(7} of n ML film with respect
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ta the reduced temperature 7, shown in figure 6, where T = T/ Tcp. The integral (3) for 6
ML film cannot be integrated in the whole range of temperature, while the integrals (3) for
5 and 4 ML films cannot be integrated in the range of reduced temperature, higher than 0.21
and 0.38, respectively. The curve (K, — 7) is a reflection of the temperature dependence of
the stabilization of PR.

From (2), (3), (14), (15) and (16} we can calculate the unpiaxial anisotropy constant
K,() as a function of the reduced temperature 7 for various £ in 1 to 6 ML films; D
‘takes the values D = 0.7, 0.8, 0.95 and 2 meV, respectively. Various (K, — 1) curves are
illustrated schematically in figures 7-10 where T = 7/Tgp. For the case of D = 0.7 meV
corresponding to K¢(0) == 0.681 erg cm™2, as shown in figure 7, the integrals (3a), (6a)
for 1 ML film and (3), (6) for 2 and 3 ML films can be integrated in the whole range of
temperature. The integral (3) for 4 ML film can be integrated in 0 to 0.28 range of reduced
temperature and cannot be integrated at reduced temperature higher than 0.28. The integrals
(3) for 5 and 6 ML films cannot be integrated in the whole range of temperature; i.e. 1,2
and 3 ML films have K,(r) > 0 and a PR in 0 K to T range, while 4 ML films have
K.(t) > 0in 0 to 0.28 range of reduced temperature and Ky(z;) = 0 at magnetization
transition point 7, = 0.28. There are no PR in 5 and 6 ML films. Figure 8 shows that in the
case of D = 0.8 meV corresponding to K (0) = 0.778 erg em™2, 1, 2 and 3 ML films have
a PR in 0 X to Tc range, 4 and 5 ML films have the transition between perpendicular and
in-plane magnetization at transition point % = 0.38 and 7, = 0.21 respectively, and there
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J; =9.605 meV for 2 ML or more film).

are no PR in 6 ML film. Figure 9 shows that in the case of D = 0.95 meV comesponding
to Ks(0) = 0.924 erg cm™2, 1, 2, 4 and 4 ML films have a PR in 0 K to 7t range, while
5 and 6 ML films have the transition between perpendicular and in-plane magnetization at
7, = 0.36 and t. = 0.21 respectively. Figure 10 shows that in the case of D = 2 meV
corresponding to Ky(0) = 1.95 erg cm~2 the films of 6 ML or thinner BcC Fe have a PR in
0 K to Tz range. Comparing figures 7-10 we find that the SA and the thickness of ultrathin
film sensitively afféct the nature of PR. It has been shown that, in the case of weak SA
[11], lower temperature, thinner film and larger D are advantageous for the presence of
PR. If D < 0.4 meV there is no PR for any Fe film thickness. In the case of fixed D, as
the thickness of vltrathin Fe film is decreased, the transition point rises. By employing
the above-mentioned theory, we can interpret the experimental results. For example, the
experiments reported by [1] and [2] can be interpreted by the case of D ~ 0.8 meV (shown
'in figure 8), while the experiment reported by [3] may be explained by the discrepancy
of surface situation (leads to different values of D) of the films. We suppose that SA is
extremely sensitive to lattice geometry, type of substrate and coating layers, adsorbates,
lattice imperfections ‘and stress and strain due to growth conditions. Qwing to the strong
dependence of SA on the actuai film preparation, different experimental results have been
-obtained for the same system (for example, Fe/Ag(001)). - :
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‘Figure 8. In the case of £ = .8 meV, the uniaxial anisotropy constant Xy of a v films
as a function of the reduced temperature t (f = 23.47 meV for 1 ML, Jy = 15.03 meV and
Jo = 9.605 meV for 2 My or more film). ]

6. Conclusion

The dependence of Curie temperature and PR on the thickness of uitrathin films results
from perpendicular surface anisotropy in the films, while the reversible transition between
perpendicular and in-plane magnetization is attributed to the temperature dependence of the
perpendicular surface anisotropy constant. Fof uitrathin BCC iron film with perpendicular
anisotropic surface energy 0.4 meV/atom (D = 0.8 meV) there is a PR in 0 K to T¢
range for 1, 2 and 3 ML films, a reversible transition between perpendicilar and in-plane
magnetization in 4 and 5 ML films (as the thickness of ultrathin film is decreased, the
transition point T; rises) and no PR in 6 ML film, We introduce the SA to describe the surface
sitvation of ultrathin films. Theory hasshown that the discrepancies of $A in dn ultrathin film
strongly change the behaviours of ferromagnetic phase transition and PR. Thus, the observed
discrepancies beween various experiments could be explained by the discrepancies of SA of
various experimental specimens. 7 '

In this work, the formulae for 7} and the anisotropy constants K.(7) and K, (T) resulting
from surface single-ion anisotropy of uitrathin film have been derived for the first time. By
employing the expressions for K,(T) and K¢(T') given in the present paper, we discuss the
stability condition of PR from a balance between surface and demagnetization anisotropy
energy in the ultrathin film. The theory explains many observed phenomena.

If the exchange integrals are regarded as adjustable from fits to experimental
measurements of magnetic properties, by using either the first-neighbour exchange
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" Figure 9. In the case of D = (.95 meV, the uniaxial anisotropy constant Ky of n ML ’ﬁlmg
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interaction approximation or to take into account the second-neighbour interaction, the
" calculated results for anisotropy constants, PR and tranition point in 2 ML or mote BCE
Fe films are not changed. In order to interpret the experiments we expect that the second-
neighbour exchange intéraction was enhanced markedly in 1 ML BCC Fe film:
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Appendix
Forthecasen' =1 (v and k = 1)’
@y = O (see equation (6a))
Uf =1

and wo; is the energy gap at the bottom of the spin-wave spectrum.
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Forthecase n =2 (v and k = 1,2, 00 = 1)
wy = E1+ 0 wp = By — Ji
Uf = U = %

and wgqz is the energy gap at the bottom of the spin-wave spectrum.
Forthecasen =3 (v and £ =1,2,3; 65 = o¢)

wpt = E + 1] wr2 = L(A+ B) wy3 = (A ~ B)

Uh=% Up=3i0+C/B) Ufy=4(t=C/B)

Up=0 Uh=31-C/B)  Ux=3(1+C/B)

A=E +E —J C=E —Ey—Jj B =(C4 81"

and wyz is the energy gap at the bottom of the spin-wave spectrum.
Forthecase n =4 (v and k = 1,2,3,4; 01 = 04; 02 = G3)

wn=YA+E)  on=iA-E)  wop=iB+F)  wou=5iB-F)

U} = 1(1+D/E) UL = 4(1-D/E) UL = H(14+C/F) UL, = 3(1-C/F)
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UL =4(1-D/E) UL =L(+D/E)  UL=1(-C/F) U =l(4C/F)
A=E+E+h B=E+E-h C=E-E+h D=E-E—h
E =[(8) — B2 — J% + 401 — 1) = 91 -
=[(& - Ex+ J2)? + 4(Jy + I+ e

and wpq is the energy gap at the bottom of the spin-wave spectrum.
Forthecasen =3 (vand £=1,2,3, 4,5; 0y = os; oy = 4); from the factorization of
equation (4), we get the characteristic equations

(wne ~ Er)lwi — By —J)=JiJ2=0 . (AD)
{onk ~ E1) @i, — Ea + J5)(ewpe — Es) — Iy Jalwwe — E3) — 2lzfa(whk - Ey) -

— 20 (e — Ez+ T3y + 2R (I Jy + T 5y = 0. (A2)
We determine wyt, igp from (Al) and ays, aps, wss from (A2): ' '

oy =(E1+ E2+ L+ 0)/2  on=(E+E+J—02))2 7
w3 =R cos[(§ —2m) /3] —a Wha =-R cos(9/3)'—-a_ wps = Reos[(8+27) /3] —a

where
O =B~ By R #4010 a=—(By+ By — 5+ B3)/3
b= (Ey ~ J)(Er + Bs) + B1 B — (J1Jo + 20 s+ 2070)
¢ = E3[JyJo— E1(Ea— T3)] 4;251 JoFy+ 2(Ey — INH E 425 i+ T 1)
U =—c/2—ala®—b/2) P =b/3—d*
V= (U2 + P32 (because of U+ PP <0)
o =tan~l(V/U)  R=20U+VHY
From equations (A1) and (A2), we can simplify Ufk as follows

2 __whl_‘EZ'_Jér U2 _&J,ﬁ;z'—-Eg—Jz’
2(wn) - wp) 27 2w — on1)

(wps — Bz + I (wpz — E3) — 2003

Uz .
6= 2(wnz — wpa)(wns — wis)
ya _ (0w = Ey+ o —E3) — 2Js
4= 2(wns — wp3)(wpa — @as)
s {wns = Ey+ J3) (s — Es) = 20 J3 U2 = -E
Us = YT o o Y
' Uwns — ona){wns — wpa) 2(60&1 wy2)
> w2 — E 2 (s — E(ews — Es) = 20104
Uy = Uz =

2(ewony ~ we1) 2(whs — wpa)(@p3 — whs)
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U2 = feops — E1)(wpg — E3) = 2015 UL = (s —,El)twkS,,“ Es) —20i);
2 2(wns — wp3}{(@pa — whs) T 20 — o) @rs — ne)

—E)low —Ex+ )~ ik

v =0  ui=o0 pi-l9m :
a1 32 33 (@r3 — wpad (@3 — wys)

U:g _ (wh4 — E])(wh4 — E2-+ Jz’) — .ll.le U325 - ((IJI:S - El)(‘f’hS - EZ'{' J‘,J’) - N
7 (wia — wp3) (s — w4s) (eons = wns)(@ns = )

and wgs is the energy gap at the bottom of the spin-wave spectrum.
Forthecase n = 6 (vand k = 1,2,3,4,5,6; 0y = 05, 03 = 05; 03 = 04), from the
factorization of equation (4), we get the characteristic equations

(e — E1)(eopy ~ ExXownk — Bz — B3} — 1 a(wpe — Es — )

= (JaJy — Iy — I Js 4 F I wme — Ey) — J{ B(wn — Ez)

A+ Ja{N1dy + I ) — B(h S+ 0 L) =0 (A3)
(ne — Ei)om — Ex){wne — Es + J3) — Iy 2(wne — £3 + J3)

— (Bady + o d5 + I3 J5 + Ly S ) (wme — En)

— N F(wm — Ex} + Sl J; + I D) + Tl hJ 4+ T 1) = 0. (Ad)
We determine wn), @y, wyps from (A3) and wpg, wps, wpg from (A4):

wp1 = Ry cos[{® — 2m)/3] — ay wyz = Ry cos(f1/3) — ay

wp3 = Ry cos[(B + 2m)/3] — ay wpa = Racos[(fr — 2m) /3] — &y

Wps = Rycos(8y/3) — aa @he = Rpcos[(@ + 27) /3] — gy
where '
a1 = —(E) + Ezs + E3 + /3)/3
by = E1Es + (E1 + E2)(E; + J5) — (W1 + 1) + (BS54 L) — [0 + )
€)= —(E By = JIJ)(Es + 5 + E (S5 + Ji.f:; — Jg.fg"' - Jz"Jg,) + Ez.fl’.f:;
A+ I+ T TR) — H T+ 31 0)
Uy = —£1/2 — ax(al — b1 /2)
Py =b/3—a’ Vi=QUi+P}PY? (because of U2+ PP < ()
6; = tan" (v /U}) Ry = 2(UL + yhHls
dp=—(E,+ Ex + E3 — J3)/3
by = E\Ey + (Er + E2)(E3 — J3) — Jo(Jt + ) — (o J5 + L) — Jy(J] + I
ca = +(E By — W) (Es — ) + Ex(Ls + Iy + Bdy+ Lo J5) + EpJ) 0
+ J2(N1dy + J1ds) + Sy (M + T )

U = —c3/2 — az{al — by/2)
Pr=bf3~a;  Va=(QUi+ PN (because of U + P < 0)
6, =tan~ (Vo/Uy) Ry = 2(U2 + VHYS,
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From equations {A3) and (A4), we can simplify U/2,
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as follows

2(ewns — wie) (Whs — Wpa)

gz o lom = EoYom — By — Jy) — Jods — LI+ BT+ Js
1 Heon — wpz)(wp — @pa) '
Ut = (wnz — Eo)(we — By — BY —Jods — I+ hJi + o Js
” | 2(wiz — @3) (@h2 — win) :
y2 o (on = B — By = ) = Jols = JiJi + Dol 4 U3 G
13 2wy — on ) (wis — wi)
U2 — (wng = Ea)(wps — B3+ J3) — oy — Ly dy — o dy — I3 03
. " 2wna — wis)(Wre — i)
o (wis — Es)ops — By + B) — Jods = BJy = By = I3y
Ui = - - -
2ewps — wnsdlwps — wpa)
: (C')kﬁ — E){(wns = Es -+ J3) — Jady = 3 dy = hJy — Dy
U2 = ‘
& 2(wne — wna)(ns — was)
U (wkl "'"EI)(wh] "'E3 JS)—JIJ:;
2= 2(wn1 — wp2)(@n1 — wn3)
2 (wps — E){ww — By — J3) = J|J§
2= 2wz — wiz)enz — on)
U2 {wps — EY)(@ps — Bz — J3)— J] 3
2= 2wnz — wy1) (@n3 — wh2) _
U2 — (wna — E)(wpa — Es + I3} — J| /3
2 2(wns — wps)(wps — wpe)
UL = (ns — EiYwps — Bz + 3} — S| Jy
B 2(ewps — whed (s — wpa)
U2 = (wps — E1)(wps — E3 + J2) — J|J5.
% 2(wns — Wra)(@hs = Wis)
U2 _ (o — Ewn — E2) — i e _ o — En)(@w — E) — A1l
n=  2wn — wp2) (g — wp3) 3%  2wnz — wrz)(wp2 — wh1)
(w3 — EV){eps — E3) —~ L1 [y 4 (na— Bl wpe — B3} — J1a
U33 Uy = —5—— —
2(wn3 — wp1) (Wh3 — wi2) 2(wna — ps)(epe — wps)
' (whs — E){ewns — E2) = B2 (wns — E1)(wps = E2) — J1 2
Uk = Uk =

2(wis — Wia)(Whs — Whs)

and g is the energy gap at the bottom of the spin-wave spectrum.
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