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Abstract. The perpendicular magnetic anisotropy in one- to six-monolayer BCC Fe films is 
studied by the Green-function method based upon the Heisenberg model (S 2 1) with outaf- 
plane spin orientation of the atoms at the surfaces. The various anisotropy constants reiulting 
from surface single-ion anisotropy have been derived for the first time. According to the 
anisotropy constants as functions af the thickness of ultnthin films and temperature, we explain 
that there is a perpendicular remanence for an intermediaterange of thickness of ultrathin films 
and temperature. The Curie temperature and the spontaneous magnetization of each atomic 
plane are alculated by taking into account the exchange interaction of the first- and second- 
neighbour couplings. It has been shown that in a onemanalayer film the second-neighbour 
exchange coupling was enhanced markedly owing to loss of the first-neighbour atoms and great 
enhancement of the overlap of the electron cloud of the second-neighbour atoms. It is proved 
that the behaviours of fmomaaetic transition and perpendicular remanence of ultrathin films 
depend strongly on the requirement that the spin be perpendicularly pinned to same degree at 
the surfaces. 

1.~1ntroduction 

Recent experiments were  exploited to study epitaxial BCC Fe films grown on Ag(001), 
Au(001) and Pd(OO1) (abbreviated Fe/Ag(OOl), Fe/Au(OOl) and FePd(001)). It has been 
shown that the perpendicular magnetic behaviour in ultrathin films points out the observed 
discrepancies between various experiments. (i) The work of Jonker et al [l] has shown that 
at room temperature there was no in-plane moment for films less than three monolayers 
(ML). It was suggested that this resulted from a perpendicular anisotropy strong enough to 
compete with the demagnetization field, which forced the magnetic moments to lie along the 
surface normal. (ii) Koon etal [2] showed that at temperatures down to 15 K the orientation 
of the magnetic moment of 1 and 2.4 ML films in zero applied field is perpendicular to the 
film plane, while the orientation of the 5.5 ML sample is in-plane at mom temperature and 
partially out-of-plane at low temperature. (iii) The work of Stampanoni etal [3] has shown 
that at T = 30 K the 3 to 4 ML films have a perpendicular remanence (PR), whereas thinner 
and thicker films have their magnetization in-plane.. Above T = 100 K no PR has been 
observed for any film thickness. (iv) Cabanel et a1 [4] showed that for the B c c  Fe(OOl)/ 
FCC Ag(001) superlattices the interface anisotropy overcomes the demagnetizing field effect 
when the thickness of the Fe layers decreases below IO A (= 7 ML). From magnetization 
measurements, the anisotropy for the 50x(10 A Fe140 A Ag) superlattice is perpendicular 
at 5 K and in-plane at 300 K. The anisotropy constant is derived from both experiments, 
which leads to 0.8 erg cm-* for the interface adisotropyconstant K,. 
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Although there are quite a few discrepancies in the results of the above-mentioned 
experiments, it shown that the PR of ultrathin films depends strongly on the temperature 
and the thickness of ultrathin films. In this paper, we give a theoretical interpretation of the 
discrepancies in the results of various experiments based upon the surface anisotropy (SA) 
of BCC Fe film [5]. As Pappas [6] and Rau et af [7] remark, the observed discrepancies 
between various experimental results could be due to effects caused by surface oxygen 
absorption and coatings, or stress and strain in films evaporated at different temperatures, or 
the use of non-atomically flat substrate surfaces resulting in stepped films. We introduce the 
strength of surface anisotropy D to describe the surface situation of various experimental 
specimens. The theory shows that the discrepancies of SA strongly change the behaviour 
of PR of ultrathin films. The observed discrepancies between various experimental results 
could be explained by the discrepancies of SA of various experimental specimens. 

Recent studies have shown that the ferromagnetic phase transition in ultrathin films and 
surfaces may differ markedly from that in the bulk. The experiments were exploited to 
study Fe/Ag(OOI), Fe/Au(OOl) and FelPd(001) films. It has been shown that the magnetic 
phase transition behaviour of ultrathin films is not the same as that of a bulk magnet: Very 
thin magnetic films-in the case of BCC FdAg(001) c 5 ML-have a reduced transition 
temperature [8]. Fe/Ag(OOl) films thicker than 5 ML have a Curie temperature TC equal to 
that of bulk Bcc Fe, while T, of a 1 ML film is about 400 K [3]. Rau e ta f  [7] have shown 
that the Curie temperature of a I ML Fe/Ag(OOl) film is below 290 K. Durr et nl [9] studied 
the system Fe/Au(OOI), and found that the Curie temperature of a 1 ML film is 300 K, that 
of a 2 ML film is 400 K and that of a 3 ML is 600 K for thickness larger than 1 ML the 
bulk value is rapidly approached. Liu era[ [IO] studied magnetic properties of the system 
FePd(001). Their experiments showed that there is a rapid change in the TC values in the 
monolayer and submonolayer region and a more gradual change for thicker films: While 
TC of a 1 ML film is just above 300 K, TC of a 2 ML film is 500 K and TC of a 4 ML film 
is 600 K. 

We have recently studied the ferromagnetic phase transition in ultrathin films [ I  I] and 
multilayer films [ 121 for simple cubic lattices. In this paper we use a similar method to 
study BCC Fe ultrathin films. The expression for the Curie temperature as a function of the 
thickness of ultrathin films and the surface anisotropy have been derived. The agreement 
between calculation and experiment is remarkably good. 

2. Model 

Gay et a1 [SI calculated the spin anisotropy of monolayers of Fe, Ni, V and CO by 
incorporating the spin-orbit interaction into the self-consistent local-orbital method. They 
found that the easy direction of magnetization is perpendicular to the plane of the monolayer 
for Fe and V, but in the plane for Ni and Co. In terms of energy per atom, the monolayer 
anisotropies are large. For example, the anisotropy of the Fe monolayer (E 0.4 meviatom) 
is 100 times the anisotropy of bulk Fe (4 peV/atom). This IS a consequence of the reduced 
symmetry of the monolayers, which allows the anisotropy to enter in second order. To study 
the effect of surface on the nature of the ferromagnetic phase transition and perpendicular 
magnetic anisotropy, we assume that the surfaces of BCC Fe n ML films are parallel to 
(001) planes and perpendicular to the z axis. The films have a finite amount of n atomic 
planes in the z [OOI] direction and an infinite number of N atoms ( N  + CO) in both 
the x [IOO] and y [OIO] direction. We shall use two different coordinate systems: the 
system ( x ,  y. z) is related to the lattice, the z axis being perpendicular to the film plane; 



Perpendicular magnetic anisotropies I185 

and the system (X, Y, Z )  refers to the spins, with Z being the quantization axis. For the 
perpendicular easy axis the two systems coincide; where? for .easy-plane anisotropy, Z 
coincides with y (X'with z ,  and Y with x ) .  The spin Hamiltonian of a BCC Fe film contains 
three par& the Heisenberg exchange term, the shape anisotropy (demagnetization) term 
and the surface anisotropy (SA) term. To consider incorporating the spin-orbit interaction 
into the local orbital [5] and demagnetization energy of uniform magnetization, these terms 
can be deduced by the method of second quantization. The spi.nHami1tonian is given by 

Here lattice site f stands for the position vector j in the x y  plane and the coordinate U in the 
z direction f = ( j ,  U); U marks the atomic planes of then M L . f i h S  (v = I ,  2,3, . ... , n); and 
(Y denotes x ,  y and t. The exchange interaction of the first-neighbour coupling (J,-,f2 = J J )  
and the second-neighbour coupling (JJ , ,~?  = J?)  are taken into account. For simplicity, we 
assume that the n ML films have a symmetrical surface and the spin orientation of the atoms 
in the surfaces is out-of-plane, i.e. DJ takes the values DJ = D, = 0 (for U = 2,3, . . . , n-I) 
and D, = D, = D > 0, in which the strength of surface anisotropy D measures the fact 
that the spin be perpendicularly pinned to some degree at the surface. In order that this 
Hamiltonian may give an SA term, it is necessary that S 2 1, where S denotes the quantum 
number of the spin operator. N, denotes the perpendicular demagnetization factor; N, and 
N ,  are the plane demagnetization factors in u1tra:hin film. Let NL = 4ir, Nx = Nr = 0 
approximately. V is the volume of the film, U is fhe primitive cell volume ( V  = N2nu).  /L 
is magnetic moment; p~ is magnetic moment of .an atom. Values appropriate for iron are 
S = I ,  /L = 2 . 2 ~ ~  and Bohr magneton pB = 0.927 x lo-'' erg Oe-I. 

We study- ultrathin fiims with perpendicular surface anisotropy energy and demagnet- 
ization energy, as shown in'equation (I). The film has uniaxial anisotropy, and thus the 
orientations of spontaneous magnetization (the direction of order for spins) in ultiathin films 
are all the same, either perpendicular to the film plane for the perpendicular easy axis or in 
the film plane for the easy-plane anisotropy, wh e magnitude of spontaneous magnet- 
ization (the degree of order for spins) changes w ion of the atomic planes owing 
to loss of translational invariance in one directio athin films [I I ,  121. In ultrathin 
films the presence of the ferromagnetic 8omg possible [13]; this 'case is not 
discussed in this paper. 

. .  

3. Curie temperature Tc and spontaneous magnetization 0; of each atomic plane in 
BCC films 

This section examines the relative magnetization UJ at site f in the case of perpendicular 
easy axis, for which the two coordinate systems ( x ,  y. z) and (X, Y, Z) coincide. Because 
the Z axis is the axis of quantization, we have (S;) = OJS;  in which ( ~ )  denotes the 
statistical average. To take into account the translational invariance along the XY plane, UJ 

will depend only on the position U involved, so that OJ = U". The present paper is concerned 
primarily with finding a statistical approximation that is able to describe the magnetic 
anisotropy of a ferromagnetic film in the presence of surface single-ion anisotropy.' In order 
to treat the single-ion anisotropy by the double-time Green-function method, decoupling 
procedures are generally employed to reduce the higher-order functions to the original 
Green function. The exchange function can be decoupled by the Tyablikov approximation: 
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((S/ZSllBs)) Y (Sfz)((S~IB,)) for f # h. This is certainly a reasonable approximation as 
long as f # h. For the special case f = h, such an approximation is less valid. Nevertheless 
there have been three distinct attempts to decouple the anisotropy Green function. They are 
each o f  the form ((i7,Z.S: + S;SFIBs)) N rf(SF)((S:lB,)). The three choices made for 
r, have been as follows: 

Shi [ l l ]  

r, = 1 

Anderson and Callen [14] 

r, = z - (i/zsz)(s;sf+ + S,’SJ 

Lines [I51 

r, = (3(S,Zl2 - S(S + I))/(s,Z)~ for B, = 

(2(S,Z)4+3(SfZ)3 - (ZS2+2S- l)(S,Z)2-S(S+ 1)s;) r, = I ,, forB,=S:Si (s;)((s,”jj +(~ ,Z )~ -S(S+  1)s;) 

Devlin 1161 has set up a new formalism in which it is not necessary to decouple the 
anisotropy Green functions and employ the decoupling schemes of the exchange terms. 
Quantitative calculations are carried out for the Cure temperature of body-centred cubic 
lattices with S 1 ,  which corresponds to the iron lattice. Although the decoupling scheme 
given by Devlin does remarkably well in comparison with the earlier theories on this subject, 
the results for the above different theories are approximately all the same in the case of 
small D ( D / J  < 0.5) [16]. 

A ferromagnetic thin film with the single-ion anisotropy has been studied by Endo and 
Ayukawa [17] using the Green-function method and Devlin’s decoupling scheme for the 
whole range of anisotropy strengths. In this paper we discuss the single-ion anisotropy 
of the iron ultrathin film (S = 1) for D very small ( D / J  << 0.5). In order to simplify 
the calculation for the spontaneous magnetization and conform with the calculation for the 
anisotropic constant (see equation (12)), the decoupling scheme choice made for rf has 
been such that (see (94): 

r, = ( ~ ( S , Z ) ~  - S(S + ~))/(S,Z)~ = [ ~ s ( s  + I )  - x i  +ZP,)(S:)I/(S:)~. 

From 0 K to the Curie point the values of rf as a function of temperature are from 1 to 314 
for the above decoupling scheme, from 1 to 213 for the Anderson and Callen decoupling 
scheme and 1 for Shi’s decoupling scheme respectively. 

From (1) we have [ I l l  
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3 I. For BCC n M L f i f m s  (n 

In this case 

2 )  

P” = pm+l-” 

where ks is Boltzmann’s constant and T is absolute temperature. OM is determined by the 
characteristic equation as follows: 

0” = Gf+l-” E ,  = &+I-. 

W I K  and = A,,(mhir)/nL(+k)(WhK - w a d  (see appendix) ( 4 4  

h, = 2 n n , / N  

where the allowed values of n, and ny are 0, il, 1 2 ,  . . . 1 N / 2  ( N  + CO), k and L take 
the values 1, 2,  3, . . . , n. Auu(o&) is the subdeterminant of the U row, v column of the 
tridiagonal form (4) .  

Using (2)-(4e), we can calculate the Curie temperature Tc, and the temperature 
dependence of the spontaneous magnetization U, (U = 1 , 2 , 3 ,  , . , , n). For inequivalent 
atomic planes of n ML films the uv are different but Tc. are equal [ll]. 

Otherwise, from (2)<4e) and the high-temperature approximation 1181 we deduce the 
Curie temperature of atomic planes in the film: 

h,  = 2 n n y / N  

TCv = [SS(s+ 1 ) / 3 C v ] ( J / / k B )  (5) 
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where 

Because wj,k/u” depends on uj,/uu (see (4) and appendix), the convergent condition 
of integrals (6) requires that the values of U”/., are finite and non-zero or U” (U = 
1 , 2 , 3 ,  . . . , n) simultaneously approaches zero at the Curie temperature Tc, i.e. the Curie 
temperatures of atomic planes in n ML films are equal: 

01 

C1 = C, (U = 2 , 3 , .  . . ,n /2  or (n + 1)/2). (7) 

To satisfy the condition (7) the Curie temperature TC and the ratio of ul and U” 

(U = 2 , 3 ,  . . . , n) has been determined simultaneously by the use of (5) and (6). When the 
above-discussed different methods for determining the Curie temperatures are compared, 
their results are consistent [ 11, 121. 

3.2. For BCC 1 MLjilms 

This is two-dimensional square lattice with the exchange integral J i f i  = JT. Equations (2) 
and (3) can be replaced by 

U” = UI 

The Curie temperatue of 1 ML films is given by 

where 
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3.3. For BCC bulk magnet 

This corresponds to films with n + 00. The Curie temperature Tcb is given by 

TCb = [8s(s + 1) /3cb] (J / /kB)  (8) 

where 

01, = 1 - C O S ( ~ , / ~ ) C O S ( ~ , / ~ ) C O S ( ~ , / ~ )  + (3Jy/4J/)[1 -(COS hx +coshy   COS^,)/^]. 

Finally, we must emphasize that the calculated formulae for the spontaneous magnetization 
(the integral (3) or ( 3 4  can be integrated at finite temperature r )  given by this section are 
suitable only for the case of perpendicular easy axis. Whether there is an energy gap at the 
bottom of the spin-wave spectrum decides the convergence of integral (3) or (3a) and the 
magnetization state in n ML film. The stabilization of perpendicular magnetization in this 
case is due mainly to the surface anisotropy (SA) and to the associated gap at the bottom 
of the spin-wave spectrum (see appendix). I t  is consistent with the criterion of PR, i.e. the 
presence of an energy gap is equivalent to K , ( T )  P 0 (see the next section). For the case 
of very weak SA the dipolar interaction is large compared to SA and no gap appears at the 
bottom of the spin-wave spectrum. Therefore the integral (3) or (34 cannot be integrated. 
This shows that the magnetization is stabilized in-plane and no longer lies along the surface 
normal, which corresponds to K , ( T )  < 0. If the energy gap of the bottom of the spin-wave 
spectrum equals zero at the temperature zr and K " ( T ~ )  = 0 (see the next section), the integral 
(3)  or ( 3 4  cannot be integrated, which means that a reversible transition between in-plane 
and perpendicular magnetization exists in the n ML film at the temperature rr ( T ~  is called 
the transition point). If the integral (6) or ( 6 4  can be integrated, it means that from 0 K to 
the Curie point there is a P R  in the n ML film. Conversely, if the integral (6) or (6u) cannot 
be integrated, this shows that from 0 K to the Curie point or at least in the range of high 
temperature there is in-plane magnetization PR. 

4. Perpendicular magnetic anisotropies in ultrathin BCC fdms 

We examine the perpendicular magnetic anisotropy in ultrathin films. The assumption 
is made that the magnetic anisotropy energy depends on the direction of spontaneous 
magnetization y with respect to the film or lattice axes'(x[100], y[OIO], z[OOl]), that is 
on  the^ direction cosines y x .  y y 7  yL. We assume new axes (X, Y, Z) in which 2 is the 
direction of the spontaneous magnetization (2 being the quantization axis) and O'is the 
angle between z and Z axes. Let the components of the spin operator with respect to the 
film axes be Sx, 9, Si and to the new axes be Sx, S', Sz. Tyablikov [18] gave their 
transformation relation: 

(9) S; = Sf + is; Sy = S/" - is Y Sy = yes; + A"S; + A"*S; f 

where 

~ = x , Y , z  yz=cose  A 2 - - 2 [  I 1 - ( y ' ) z ] l / 2  

y x y x  + y'y' + yzy2 = 1 A X y X  + AJy'  + Azyz = 0 (90) 

AXAX + AYAY + ALAz = 0 A'*Ar + AY*AS + Az*AZ = 1/2. 
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Substitution of (9) and (9a) into (I) leads to the expression for the spin Hamiltonian and 
the free energy of the system F or f 

+ y‘A‘(S,”S/’ + S;S,”) + y‘A‘*(S,”S; + STSf) 

+ A:A‘*(S;S; + s,-s/’)] + . . . 
F = Fen + Fk  + Fa = -ksT In sp(e-n‘knT) 

(la) 

(10) f = F /  V 

where Fa is the exchange energy, Fk is the clystalline anisotropy energy and Fd is the 
shape anisotropy (demagnetization) energy. 

The free energy f and the uniaxial anisotropy constant Ku are given by 

f =fo+K,,sin26’+ ... 

We define the crystalline anisotropy constant or the effective volume anisotropy constant 

Because the 2 axis is the axis of quantization, so (Sf) = (S,’) = 0, (SF) = (S;) = 0. 
K, and the shape anisotropy constant Kd. 

By employing the Green-function method [18], we have 

((S,+)’, = ((S;)z) = (S,+Sf) = (s;sr”, = (S,”Sr’, = (S,”S,-) = 0. (9b) 

The expressions have been given by [181 

where PJ = P, and (Sf)  = (S:) = Su“ to be calculated from (2) and (3). Substituting 
( la)  and (9a)-(94 into ( I  I), K, is given by 

N2 N2 
D.[3((Sf)*) - S(S + 1)]/2 = 7 

V “  
K, = - D,[S(S + 1) - z(1 +ZP,)SU,] (12) 

where V = Nzna3/2, a is the lattice constant, n is the number of atomic planes of the film 
and the primitive cell volume U is a3/2. 

Suppose the perpendicular magnetic anisotropy only resulted from the SA, i.e. D I  = 
Dm = D, D,  = 0 (U = 2,. , , , n - 1). From equation (12) we have 

K,(r )  = ( D / a 2 ) [ S ( S +  1) - $(l +2P1)Sul] (13) 

K.,(r) = (2AD/a3n)[S(S+ 1) - $ ( 1 + 2 P l ) S q ]  = (AD/a3n)T~(Sal)* (14) 
K,(s) = A K , ( r ) / d  

where A is the number of surfaces (A = 1 for n = I; A = 2 for n 2 2). the dependence of 
the effective volume anisotropy constant on temperature r has been emphasized by writing 
Kv(r), while Ks(r) is the surface anisotropy constant at temperature r .  

d = nul2 



. ~ .. 
Perpendicular mgneric anisotropies I191 

At absolute zero temperature, since uI = 1 and PI = 0 as s = 0, equations (13) and 
(14) are replaced by 

K,(O) = (DS/a2)(S - 1/2) 

K,(O) = (2ADS/u3n)(S - 1/2). 

Just below the Curie temperature sc, since U, + 0 and P, + ~3 as s + sc, equation (2) 
is replaced by 

9 - 2s - 2S2 
30 

P"-2 . . . 3P"U" = (S + 1) 

On substituting into (13) and (14) we now get 

.: +o(u:) + .. .) . (14b) 
2AD 

K , ( r )  = - 3S(S + 3/2)(S - 1/2) ( 5(S+ 1) 4312 

prom (1 I )  we derive the expression for the shape anisotropy constant K d ( T )  as: 

where M s ( r )  is spontaneous magnetization at temperature r .  
The uniaxial anisotropy constant (11) was rewritten as 

Ku(7) = Kv(r) - Kd(T). (16) 

We discuss the stability condition of perpendicular remanence (PR) from a balance 
between the surface and the demagnetization anisotropic energy in the ultrathin film. If 
K , ( r )  > 0 there is a PR resulting from a perpendicular surface anisotropy strong enough to 
overcome the shape anisotropy, which is decided by four factors, including the strength of 
surface anisotropy D ,  the thickness of ultrathin film n,  the temperature r (or U" and rI) and 
the absolute saturation magnetization Ms(0) .  Generally, for weak surFace anisotropy [Ill,  
uI < U" (U # l), and as the temperature increases 6 1  drops more rapidly than U, (v p 1). 
Hence lower temperature, thinner film, larger D and smaller Ms(0) are advantageous for 
the presence of PR. As above, we can predict that Fe films and fixed D and Ms(0) have a 
PR for an intermediate range of film thickness and temperature. For example we interpret 
that Fe film has a ~ R j u s t  for films less than 5.7 ML. From (14u), (15), (16) and K,(O) 5 0 
we now i e t  the condition for a ~ R ~ t o  exist at 0 K 

A D ( S  - I /2) /n  - 2npMs(0) =- 0. (17) 

For ultrathin BCC iron film with D = 0.8 meV [5] and Ms(0)  = 1740 G ( S  = I ,  pS = 
2 . 2 ' ~ ~  and M,(O) =.pS/ (a3/2) ) ,  we obtain n < 5.7, which agrees with the resuIt of the 
experiment [2]. 

Finally, we can prove that the conditions of K,(s,) = 0 and zero energy gap at the 
bottom of the spin-wave spectrum are equivalent. From the conditions .of zero energy gap 
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gap given by the appendix, such as wOt(r,) = 0, woz(rr) = 0, oo3(rr) = 0, oo4(rr) = 0, 
o&s(rr = 0 (i.e. c = 0)  and oo6(Tc)~ = 0 (i.e. c2 = 0) for 1, 2, 3, 4, 5 and 6 ML film 
respectively, we derive their equivalent equations as follows: 

DrI Su1 - p4rrMS = 0 

Drl  SUI - p4nMs = p4nMSu2/(2q)  

D T I S U I  - p4nMs = p 4 n M S q / u ~  

2Dr1Su:  - ( 2 q  + 2%. + U ~ ) & Y C ~ &  = 0 

Drl  SU: - (U] +U? + u3)p4xMs = 0 

From the above equations we now get 

(for 1 and 2 ML film) 

(for 3 ML film and 8JfSu1 >> p4nMJ 

(for 4 ML film and 4JfSu1 + JJu1 >> p4nMs) 

(for 5 ML film and JfSul >> p4xM,)  

(for 6 ML film and JfSq >> p4nMJ.  

5. Numerical calculation and discussion 

Using a computer to perform the numerical calculation of the temperature dependence of 
the relative magnetization U” and the Curie temperature Tc, we design the first computer 
program as follows: Because U” = 1 (U = 1, . . . , n)  at 0 K, if the increment in temperature 
t and the initial values U” = 1 (U = 1,.  . . , n / 2  or (n + 1)/2) are substituted into (Z), (3) 
and (4a)-(4e), the final values of O;O;(t) at temperature t are given by iterative solution 
until Au&) c S (here Au.(t) is the difference between the final value and the final 
substituting value of U&); the value appropriate for 6 is IO” in this paper). Similarly, if the 
increment in temperature 2t and the initial values U, = u&) (U = 1, . . . , n/Z or (n + 1)/2) 
are substituted into (2) ,  (3) and (4a)-(4e), the final values of U ,  = uu(2t) at temperature 
2t are given by iterative solution until Auv(2t) < 6 (here Au,(2t) is the difference 
between the final value and the final substituting value of ~ ” ( 2 t ) ) .  We repeat the calculation 
at temperature 3r,  4 t ,  . . . step by step in the above way until 0; = 0 (U = 1 ,2 ,  . . . , n )  at the 
Curie temperature. The relative magnetization U” of each atomic plane as a function of the 
temperature r and the Curie temperature rc are given. The second computer program to 
determine the Curie temperature is as follows: Let uu/uw = (uu/al)/(uw/ul); we substitute 
the initial values of UJCT, (U = 2,3, . . . , n/2 or (n + l)/2) into equation (6). By iterative 
solution until A(0;jul)  < E (here A(u”/uI)  is the difference between the final value 
and the final substituting value of uv/ul; the value appropriate for E is in this paper), 
we obtain the final values of u U / q  and the corresponding value of CI, which satisfy 
condition (7). From equation (5) the Curie temperature is determined. After determining 
the variations of PI and U” with r ,  the anisotropy constants &(T), K,(r), K~(T), K,(T) 
and the energy gap at the bottom of the spin-wave spectrum as functions of the temperature 
r can be calculated by (13), (14), (15), (16) and the appendix. 

In the following numerical calculation we defined the reduced temperature T = T/TCb, 
where Tcb is the Curie temperature for the bulk magnet and T is absolute temperature; the 
values appropriate for iron are S == 1, p = 2.2 p ~ ,  MdO) = 1740 G ,  T a  = 1043 K, the 
lattice constant a = 2.87 A, the primitive cell volume U = a3/2, and the area taken up 
by one atom in the surface is a2. First of all, we determine the value of D. From the 
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iron with Cune temperature Ta = 1043 K 

data given by Gay er al 151 the perpendicular anisotropic surface energy of BCC Fe(001) is 
0.4 meV/atom and substituting this value into (13a) (Ks(0) = D/2a2, 012  = 0.4~meV), 
we obtain D = 0.8 meV and K,(O) = 0.778 erg cm-'. Secondly, we determine the values 
of the exchange integrals; in principle, the first- and second-neighbour couplings should be 
considered. In practice, how to choose the values of the first-neighbour exchange integral 
J f  and second-neighbour exchange integral Jc  was most important. In this paper, the 
exchange integrals will be regarded as adjustable, to be determined, if possible, from fits 
to experimental measurements of  magnetic properties. If the first- and second-neighbour 
interactions are considered simultaneously, the bulk Curie temperature T c ~  for BCC Fe 
would depend on both J; and J,. According to T c ~  = 1043 K, using (8) and (8a) we 
determine the allowed values of exchange integrals J f  and J ,  (J,, J v )  for ,various J v / J f .  
For example, J f  = 23.47 meV, J ,  = 0 (for J 3 / J ,  = 0, Cb = 1.393) . . . , J f  = 18.52 meV, 
J ,  = 5.554 meV (for J I / J f  = 0.3, Cb = 1.099) and J j  = 15.03 meV, J ,  = 9.605 meV (for 
J,./Jf = 0.639, Cb = 0.8921), respectively, as shown in figure 1. From (5), (6), (7), (5a) 
and ~ ( 6 a )  we take the value D = 2 meV and choose different allowed values of ( J f ,  J x ) ,  
respectively. The calculated results for the Curie temperature as a function of  the thickness 
of the films are about the same in the case of 2 to 6 ML BCC iron films and approximately 
agree with the experiments [7,9,10], as shown in figure 2, where rc = Tc/Tcb. Conversely, 
to choose different allowed values of ( J f ,  J;.), respectively, the calculated values of the Curie 
temperature in  1 ML BCC iron films are different and lower than the experimental results 
(T, _Y 300 K), as shown in figure 2. Then we could not find a suitable value of J ,  to satisfy 
both 1 ML and 2 to 6 ML, which means that the value of J ,  in 1 ML is not equal to the value 
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of Jy in 2 to 6 ML. From (Sa), (6u) and letting D = 0.8 meV we obtain the Curie temperature 
Tc as a function of Jr in I ML film (see figure 3). If the value for J ,  is about 24 meV, it 
goes beyond the limits of allowed values of J,; the calculated value of TC of 1 ML film is 
300 K, shown in figures 1 and 3. Therefore we suppose that the exchange integral J, in 1 
ML films should be replaced by J ;  J is not equal to the allowed values of J ,  and can be 
more than 12.21 meV. The reason is that the exchange interactions of the second-neighbour 
atoms are enhanced owing to loss of the first-neighbour atoms and great enhancement of 
the overlap of the electron cloud between the second-neighbour atoms. Furthermore, in 
accordance with the band theory of ferromagnetism and Ruderman-Kiftel-Kasuya-Yoshida 
(RKKY) indirect exchange mechanism, the effective exchange integral as a function of the 
interatomic distance R is 

J(R) = F[cos(%k~R) - sin(2k~R)/(%pR)]/R~. 

For iron atom there~are 0.6 electrons in the 4s band and the distances of first- 
and second-neighbour atoms are 0.866~ and a (U = 2.87 A), respectively. We obtain 
kp = 1.1455 x IO-' cm-' and JT/Jf = 0.639. Therefore in the following numerical 
calculation for I ML films we take the value J = 23.47 meV and the values roughly 
appropriate for 2 ML or more BCC iron film are J f  = 15.03 meV, Jy = 9.605 meV 
( J J J f  = 0.639, Cb = 0.8921). Consider the exchange interaction of second-neighbour 
atoms. The thoery could explain the fact that there is a rapid change in the TC values in the 
monolayer and submonolayer region and a more gradual change for the thicker films [lo]. 
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By employing equations (5), (6),'(5a) and ( 6 4 ,  we perform the numerical calculation of 
the Curie temperature. In the case .of D = 2 meV the integrals (6) and ( 6 4  can be integrated 
fo! 1 ML to 6 ML films, i.e. there is a perpendicular remanence (PR) in the temperature range 
of 0 K to TC for 1 to 6 ML films. In the case of D = 0.95 meV the integrals (6) and 
(60) can be integrated for 1, 2, 3 and 4 ML films but no longer for 5 and 6 ML films. This 
means that there are no PR at least in the range of high temperature for 5 and 6 ML films. 
In the case of D = 0.8 meV the integrals (6) and (6a) can be integrated for 1, 2 and 3 ML 
films but no longer for 4, 5 and 6 ML films.. The reduced Curie temperature sC versus the 
thickness of n ML films for various D is illustrated in figure 4, where p = Tc/Tcb. The 
calculations for the Curie temperature are consistent with the experiments [7,9, 101. 

The variations in u"(r), ri(r), K v ( r ) ,  K ~ ( T ) ,  w03 and 00s (the energy gap at the bottom 
of the spin-wave spectrum) with respect to the reduced temperature r in 3 ML and 5 ML 
films are illustrated schematically in figures ( 5 4  and ~(b), respectively, where r = T / T a ,  
D = 0.8 meV. Generally, we can prove that the spontaneous magnetization changes with 
the position of the atomic planes, which are parallel-to the surfaces of n hiL films, but the 
Curie temperatures of atomic planes are all the same. In this paper we have discussed the 
special case, in which the SA on both surfaces are equal (01 = Dn), and the spontaneous 
magnetizations of inequivalent atomic planes are different (see figures 5(0) and (b)) .  The 
surface anisotropy (SA) can be divided into two cases [111:. one is weak SA and the other is 
strong SA. Inthe case of weak SA the spontaneous magnetization of the surface atomic plane 
is less than those of the.other atomic planes: If K,(t,) - Kd(rr) = 0 the reversible transition 
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beween perpendicular (at low temperature r c rr) and in-plane (at high temperature r > rr) 
magnetization in ultrathin films will happen at temperature rr. In the case of strong SA 
the strong spontaneous magnetization of the surface atomic plane is more than those of the 
other atomic planes. If K,(s,) - K&) = 0 at temperature r, there is a reversible transition 
between in-plane (at low temperature r -= T ~ )  and perpendicular (at high temperature T > 6) 
magnetization in ultrathin films. Generally, the energy gaps at the bottom of spin-wave 
spectra in monolayer and submonolayer Fe films have the maximum values possible at 
absolute zero degrees. Then, as the temperature is raised (or U” decreased), their magnitudes 
decrease monotonically until U, = 0; they become zero at the Curie temperature, as 003 

shown in figure 5(a). However, if the ultrathin films have a reversible transition between 
perpendicular 3nd in-plane magnetization (U” # 0) at temperature rr. the calculated results 
have proved that the zero energy gap at the bottom of the spin-wave spectrum &d the 
zero uniaxial aqisotropy constant would happen simultaneously at the same temperature rr. 
For example, in the case D = 0.8 meV for 5 ML film when the temperature has gone up 
to r = T, = 0.21, the film has o&(r,) = 0 and K&) - KdrJ  = 0 accompanied by 
discontinuity changes in the spontaneous magnetization G(rr) at the same temperature r,, 
as shown in figure 5(b). From (4c) we get rl(0) = I at 0 K and rl(rc) = 0.75 at Tc. 
rl(r) as a function of temperature in 3 ML and 5 ML films has been shown in figures 5(a) 
and (b). 

In the case of D =~0.8 meV, which was established by Gay [5] (0.4 meV/atom), the 
surface anisotropy constant K,(O) equals 0.778 erg cm-’ at 0 K. From (2), (3) and (13) we 
further give the variation in the surface anisotropy constant K s ( r )  of n ML film with respect 
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for 2 ML or more film). 

to the reduced temperature r ,  shown in figure 6, where t = T/Tcb. The integral (3) for 6 
ML film cannot be integrated in the whole range of temperature, while the integrals (3) for 
5 and 4 ML films cannot be integrated in the range of reduced temperature, higher than 0.21 
and~0.38, respectively. The curve ( K ,  - t) is a reflection of the temperature dependence of 
the stabilization of PR. 

From (2), (3), (14), (15) and (16) we can calculate the uniaxial anisotropy constant 
K,(r) as a function of the reduced temperature t for various D in 1 to 6 ML films; D 
takes the values D = 0.7, 0.8, 0.95 and 2 meV, respectively. Various (Ku - r )  curves are 
illustrated schematically in figures 7-10 where 5 = T / T a .  For the case of D = 0.7 meV 
corresponding to &(O) = 0.681 erg cm?, as shown in figure 7, the integrals (3u), (6u) 
for 1 ML film and (3), (6) for 2 and 3 ML films can be integrated in the whole range of 
temperature, The integral (3) for 4 ML film can be integrated in 0 to 0.28 range of reduced 
temperature and cannot be integrated at reduced temperature higher than 0.28. The integrals 
(3) for 5 and 6 ML films cannot be integrated in the whole range of temperature; i.e. 1,2 
and 3 ML films have K,(s) > 0 and a PR in 0 K to TC range, while 4 ML films have 
K,(i) > 0 in 0 to 0.28 range of reduced temperature and Ku(rC) = 0 at magnetization 
transition point r, = 0.28. There are no PR in 5 and 6 ML films. Figure 8 shows that in the 
case of D = 0.8 meV corresponding to K,(O) = 0.778 erg cm-', 1, 2 and 3 ML films have 
a PR in 0 K to TC range, 4 and 5 ML films have the transition between perpendicular and 
in-plane magnetization at transition point r, = 0.38 and 5, = 0.21 respectively, and there 
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are no PR in 6 ML film. Figure 9 shows that in the case of D =,0.95 meV corresponding 
to Ks(0) = 0.924 erg cm-’, 1, 2, 4 and 4 ML films have a PR in 0 K to TC range, while 
5 and 6 ML films have the transition between perpendicular and in-plane magnetization at 
r, = 0.36 and & = 0.21 respectively. Figure 10 shows that in the case of D = 2 meV 
corresponding to &(O) = 1.95 erg cm-’ the films of 6 ML or thinner BCC Fe have a PR in 
0 K to Tc range. Comparing figures 7-10 we find that the SA and the thickness of ultrathin 
film sensitively affect the nature of PR. It has been shown that, in the case of weak SA 
[ 1 I], lower temperature, thinner film and larger D are advantageous for the presence of 
PR. If D e 0.4 meV there is no PR for any Fe film thickness. In the case of fixed D, & 
the thickness of ultrathin Fe film is decreased, the transition point s, rises. By employing 
the abovementioned theory, we can interpret the experimental results. For example, the 
experiments reported by [I] and [2] can be interpreted by the case o f ~ D  _y 0.8 mev (shown 
in figure S), while the experiment reported by [3] may be explained by the discrepancy 
of surface situation (leads to different values of D) of the films. We suppose that SA is 
extremely sensitive to~lattice geometry, type of substrate. and coating layers, adsorbates, 
lattice imperfections ~and~stress and strain due to growth conditions. Owing to .the strong 
dependence of SA on the actual film preparation, different experimental results have been 
obtained for the same system (for example, FdAg(OO1)). 
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6. Conclusion 

The dependence of Curie temperature and PR on the thickness of ultrathin films results 
from perpendicular surface anisotropy in the films, while the reversible transition between 
perpendicular and in-plane magnetization is attributed to the temperature dependence of the 
perpendicular surface anisotropy constant. Foi ultrathin BCC iron film with perpendicular 
anisotropic surface energy 0.4 meV/atom (D = 0.8 meV) there is a PR in 0 K to Tc 
range for 1, 2 and 3 ML films, a reversible transition between perpendichlar and in-plane 
magnetization in 4 and 5 ML films (as the thickness of ultrathin film is decreased, the 
transition point T~ rises) and no PR in 6 ML film. We introduce the SA to destribe the surface 
situation of ultrathin films. Theory has~shown that the discrepancies of SA in an ultrathin film 
strongly change the behaviours of ferromagnetic phase transition and PR. Thus, the observed 
discrepancies beween various experiments could be explained by the discrepancies of SA of 
various experimental specimens. 

In this work, the formulae for Fk and the anisotropy constants K,(T) and K,(T) resulting 
from surface single-ion anisotropy of ultrathin film have been derived for the first time. By 
employing the expressions for K,(T) and &(T)  given in the present paper, we  discuss the 
stability condition of PR from a balance between surface and demagnetization anisotropy 
energy in the ultrathin film. The theory explains many observed phenomena. 

If the exchange integrals are regarded as adjustable from fits to experimental 
measurements of magnetic properties, by using either the first-neighbour exchange 
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interaction approximation or ro take into account the second-neighbour inter&on, the 
calculated results for anisotropy constants, PR and transition point in 2 ML or &tore 6CC 
Fe films are not changed. In order to interpret the experiments we expect that the second- 
neighbour exchange interaction was enhanced markedly in 1 ML BCC Fe film.. 
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Appendix 

For the case IZ = 1 (U and k = 1) 

oh1 = oh1 (see equation @a)) 

U:] = 1 

and 001 is the energy gap at the bottom of the spin-wave spectrum. 
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For the case n = 2 (U and k = 1,2; uz = UI) 

WILI = EI + J I  

1 1  - 12 - z 
WhZ = EI - JI 

U 2  - "2 - I 

and woz is the energy gap at the bottom of the spin-wave spectrum. 
For the case n = 3 (U and k = 1,2,3; 4 = UI) 

Whl = El f J ;  O h 2  i ( A  + B) W g 3  = f ( A  - B )  

U;, = 4 
Uzl = 0 

A = E l  + E ? -  J ;  

U;2 = ;(I + C / B )  

U& = f ( 1 -  C/B) 
U:3 = +(I - C/B) 
U& = f(1 + C/B) 

C =  El - Ez-  J ;  B = ( C z + 8 J ~ J ~ ) L ' z  

and ~ 0 3  is the energy gap at the bottom of the spin-wave spectrum. 
F o r t h e c a s e n = 4 ( u  a n d k = 1 , 2 , 3 , 4 ; q  = U ~ ; U Z = Q )  

Whl = ; (A  +E)  Oh2 = $(A - E )  o h %  = i ( B  + F) 0 1 4  = $ ( B  - F )  

U2 1 1  - I  - 4 (  1 + D I E )  U;2 = i ( i - D / E )  U:, = $(l+C/F) U:, = $(l-C/F) 



and oO4 is the energy gap at the bottom of the spin-wave spectrum. 

equation (4), we get the characteristic equations 
For the case n = 5 (U and k = 1,2,3,4,5; UI = 05; uz = Q), from the factorization of 
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From equations (A3) and (A4), we can simplify U:k as follows 

( o h 1  - E z ) ( m h i  - E 3  - 53)  - JzJ3  - JiJ; + JzJ;  + 4 5 3  
U:, = 

2(Whl - @ h 2 ) ( ~ h I  - 0 1 3 )  

I205 
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